Vitamin B2 and Riboflavin sources and Advantages to Body

Riboflavin, also known as vitamin B2, is the vitamin formerly known as G.[2] It is an easily absorbed colored micronutrient with a key role in maintaining health in humans and other animals. Riboflavin is the central component of the cofactors FAD and FMN, and is therefore required by all flavoproteins. As such, vitamin B2 is required for a wide variety of cellular processes. It plays a key role in energy metabolism, and for the metabolism of fats, ketone bodies, carbohydrates, and proteins.

Milk, cheese, leaf vegetables, liver, kidneys, legumes, yeast, mushrooms, and almonds[3] are good sources of vitamin B2.

The name “riboflavin” comes from “ribose” (the sugar whose reduced form, ribitol, forms part of its structure) and “flavin”, the ring-moiety which imparts the yellow color to the oxidized molecule (from Latin flavus, “yellow”). The reduced form, which occurs in metabolism along with the oxidized form, is colorless.

Riboflavin is best known visually as the vitamin which imparts the orange color to solid B-vitamin preparations, the yellow color to vitamin supplement solutions, and the unusual fluorescent-yellow color to the urine of persons who supplement with high-dose B-complex preparations.

Riboflavin can be used as a deliberate orange-red food color additive, and as such is designated in Europe as the E number E101.

Vitamin B was originally considered to have two components, a heat-labile vitamin B1 and a heat-stable vitamin B2. In the 1920s, vitamin B2 was thought to be the factor necessary for preventing pellagra. In 1923[chronology citation needed], Paul Gyorgy in Heidelberg was investigating egg-white injury in rats; the curative factor for this condition was called vitamin H (which is now called biotin or vitamin B7). Since both pellagra and vitamin H deficiency were associated with dermatitis, Gyorgy decided to test the effect of vitamin B2 on vitamin H deficiency in rats. He enlisted the service of Wagner-Jauregg in Kuhn’s laboratory.[citation needed] In 1933[chronology citation needed], Kuhn, Gyorgy, and Wagner found that thiamin-free extracts of yeast, liver, or rice bran prevented the growth failure of rats fed a thiamin-supplemented diet.

Further, the researchers noted that a yellow-green fluorescence in each extract promoted rat growth, and that the intensity of fluorescence was proportional to the effect on growth. This observation enabled them to develop a rapid chemical and bioassay to isolate the factor from egg white in 1933[chronology citation needed], they called it Ovoflavin. The same group then isolated the same preparation (a growth-promoting compound with yellow-green fluorescence) from whey using the same procedure (lactoflavin). In 1934[chronology citation needed] Kuhn’s group identified the structure of so-called flavin and synthesized vitamin B2.

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) function as cofactors for a wide variety of oxidative enzymes and remain bound to the enzymes during the oxidation-reduction reactions. Flavins can act as oxidizing agents because of their ability to accept a pair of hydrogen atoms. Reduction of isoalloxazine ring (FAD, FMN oxidized form) yields the reduced forms of the flavoproteins (FMNH2 and FADH2).

For more information please visit Vitamin B2

Share This Post

Post Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.